Why Product of Probabilities (Masses) for Independent Events? A Theorem

نویسندگان

  • Vladik Kreinovich
  • Scott Ferson
چکیده

For independent events A and B, the probability P (A & B) is equal to the product of the corresponding probabilities: P (A&B) = P (A) · P (B). It is well known that the product f(a, b) = a ·b has the following property: once n ∑ i=1 P (Ai) = 1 and m ∑ j=1 P (Bj) = 1, the probabilities P (Ai & Bj) = f(P (Ai), P (Bj)) also add to 1: n ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Why Product of Probabilities (Masses) for Independent Events? A Remark

For independent events A and B, the probability P (A & B) is equal to the product of the corresponding probabilities: P (A&B) = P (A) · P (B). It is well known that the product f(a, b) = a ·b has the following property: once n ∑ i=1 P (Ai) = 1 and m ∑ j=1 P (Bj) = 1, the probabilities P (Ai & Bj) = f(P (Ai), P (Bj)) also add to 1: n ∑

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

A Gleason-type theorem for any dimension based on a gambling formulation of Quantum Mechanics

Based on a gambling formulation of quantum mechanics, we derive a Gleasontype theorem that holds for any dimension n of a quantum system, and in particular for n= 2. The theorem states that the only logically consistent probability assignments are exactly the ones that are definable as the trace of the product of a projector and a density matrix operator. In addition, we detail the reason why d...

متن کامل

ارزیابی ریسک احتمالی به روش آنالیز درخت خطای فازی بر پایه ی دو نوع توزیع امکان وقوع نقص در صنایع فرآیندی

Introduction: Probabilistic risk assessment using fault tree analysis is an effective tool to assess occurrence probability of hazardous events in chemical process industries. Unfortunately, the failure occurrence probability of the basic events are often not available in process industries. The aim of this study is how calculate basic events failure occurrence probability when basic events do ...

متن کامل

The reliability Wiener number of cartesian product graphs

Reliability Wiener number is a modification of the original Wiener number in which probabilities are assigned to edges yielding a natural model in which there are some (or all) bonds in the molecule that are not static. Various probabilities naturally allow modelling different types of chemical bonds because chemical bonds are of different types and it is well-known that under certain condition...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004